extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×C3⋊S3)⋊1C4 = C62.32D4 | φ: C4/C1 → C4 ⊆ Out C22×C3⋊S3 | 24 | 4 | (C2^2xC3:S3):1C4 | 288,229 |
(C22×C3⋊S3)⋊2C4 = C62.110D4 | φ: C4/C1 → C4 ⊆ Out C22×C3⋊S3 | 72 | | (C2^2xC3:S3):2C4 | 288,281 |
(C22×C3⋊S3)⋊3C4 = (C6×C12)⋊C4 | φ: C4/C1 → C4 ⊆ Out C22×C3⋊S3 | 24 | 4+ | (C2^2xC3:S3):3C4 | 288,422 |
(C22×C3⋊S3)⋊4C4 = C2×C6.D12 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3):4C4 | 288,611 |
(C22×C3⋊S3)⋊5C4 = C62.116C23 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 24 | | (C2^2xC3:S3):5C4 | 288,622 |
(C22×C3⋊S3)⋊6C4 = C22⋊C4×C3⋊S3 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 72 | | (C2^2xC3:S3):6C4 | 288,737 |
(C22×C3⋊S3)⋊7C4 = C2×C6.11D12 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 144 | | (C2^2xC3:S3):7C4 | 288,784 |
(C22×C3⋊S3)⋊8C4 = C2×C62⋊C4 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 24 | | (C2^2xC3:S3):8C4 | 288,941 |
(C22×C3⋊S3)⋊9C4 = C22×C6.D6 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3):9C4 | 288,972 |
(C22×C3⋊S3)⋊10C4 = C23×C32⋊C4 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3):10C4 | 288,1039 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×C3⋊S3).1C4 = C12.70D12 | φ: C4/C1 → C4 ⊆ Out C22×C3⋊S3 | 24 | 4+ | (C2^2xC3:S3).1C4 | 288,207 |
(C22×C3⋊S3).2C4 = C12.19D12 | φ: C4/C1 → C4 ⊆ Out C22×C3⋊S3 | 72 | | (C2^2xC3:S3).2C4 | 288,298 |
(C22×C3⋊S3).3C4 = (C2×C62).C4 | φ: C4/C1 → C4 ⊆ Out C22×C3⋊S3 | 24 | 4 | (C2^2xC3:S3).3C4 | 288,436 |
(C22×C3⋊S3).4C4 = C22⋊F9 | φ: C4/C1 → C4 ⊆ Out C22×C3⋊S3 | 24 | 8+ | (C2^2xC3:S3).4C4 | 288,867 |
(C22×C3⋊S3).5C4 = C22×F9 | φ: C4/C1 → C4 ⊆ Out C22×C3⋊S3 | 36 | | (C2^2xC3:S3).5C4 | 288,1030 |
(C22×C3⋊S3).6C4 = C12.78D12 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3).6C4 | 288,205 |
(C22×C3⋊S3).7C4 = C12.60D12 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 144 | | (C2^2xC3:S3).7C4 | 288,295 |
(C22×C3⋊S3).8C4 = C62.6(C2×C4) | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3).8C4 | 288,426 |
(C22×C3⋊S3).9C4 = C2×C12.29D6 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3).9C4 | 288,464 |
(C22×C3⋊S3).10C4 = C3⋊C8⋊20D6 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 24 | 4 | (C2^2xC3:S3).10C4 | 288,466 |
(C22×C3⋊S3).11C4 = C2×C12.31D6 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3).11C4 | 288,468 |
(C22×C3⋊S3).12C4 = C2×C24⋊S3 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 144 | | (C2^2xC3:S3).12C4 | 288,757 |
(C22×C3⋊S3).13C4 = M4(2)×C3⋊S3 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 72 | | (C2^2xC3:S3).13C4 | 288,763 |
(C22×C3⋊S3).14C4 = C2×C3⋊S3⋊3C8 | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3).14C4 | 288,929 |
(C22×C3⋊S3).15C4 = C2×C32⋊M4(2) | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3).15C4 | 288,930 |
(C22×C3⋊S3).16C4 = C3⋊S3⋊M4(2) | φ: C4/C2 → C2 ⊆ Out C22×C3⋊S3 | 24 | 4 | (C2^2xC3:S3).16C4 | 288,931 |
(C22×C3⋊S3).17C4 = C2×C8×C3⋊S3 | φ: trivial image | 144 | | (C2^2xC3:S3).17C4 | 288,756 |